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Transition Probabilities for a Truncated Birth~Death Process
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ABSTRACT, By el 'y real lysis a simple i
is found for the transition probability Py, () in the homoge-
neous irreducible birth-death process on a finite state space.
Some conditions are obtained for determining whether p,, , is
increasing or not.
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1. Definitions and results

We will study the birth-death process N(z) on the
state space {0, 1, ..., K}, where K is a positive integer.
The rates of transition are 4, for passage from state
n to state n+1 and u, for passage from n to n—1.
Here 2,>0 for 0<n<K-1, Ax=0, and u,>0 for
1<n<K, 1y =0. For >0 put

Pn,(2) = P(N(u+1t) =j| N(u) = n);

a;=1im p, (1)
>0

7=0 i=1

K r -1 3
= (Z Hm“a-,) _Hlm“z,vl,

with the convention [ ol =1.

The transition probability will be expressed in
terms of two sequences of polynomials. Define these
recursively

Py =1, P, =5+2,

Py =(s+2Aa+p ) Pry — Ay sy 1 Py,
2<r<K+1;

Qo=1,0:=s+pg,

Qr =+ Agsrr T gr1-r) Or1~ Agsarlg sy Qrosy

2<r<K+1.

Here P, and Q, are of degree r with coefficient 1 for
s". Further we set ¢, ,=1 and

Hyer by J<n
Cn,g = .
Ap e gy, >

Proposition 1. Let B, be defined by Pg..(s)=
Qr1(8) =5(s+ B ...(s + Bg), 0 <y < ... <Pg. It holds
PI’?+1( -B)=-8 Hﬁsr(ﬂt - B,). Put
- cn.KcK./Pn(_ﬂr) P}( -8y

Pg(-B,) Pisr(-B,)

- Cn.lQK—ms,xln.l)(_ﬂr) Pmm(n.l)( _ﬂr)‘
Pien(-B)

Then for 0 <n<K and 0 <j <K it holds

A gr

K
pﬁ,J(t)-”I"' Zla‘n.i.r €xp (_ﬁrt)' (1)

Note that p,, ;/cn, ; =Py, nlc;, n SO What is said about
Pn.; and p,, , in Propositions 3 and 4 will hold for
Py, and p, ,, as well.

Proposition 2, For n=j all terms in (1) are non-
negative and there are as many null terms as there
are zeros of P, equal to a zero of Qx_, (at most
min (n, K —n)).

Proposition 3. Let n <j. If p,, , is increasing in t, then
D,y is increasing for m<n and r >j. If p, , is not
increasing, then p, , is not increasing for n <m<j and
n<r<j.

If either n or j is a reflecting state (0 or X) more
information is available. Define the two properties
(i) the function is increasing and (ii) the function
has exactly one local maximum after which it de-
creases to its limit. Then from Keilson (1971), p. 393,
Cor. 1, we can infer that p,_; has either property (i)
or (ii) when 7 or j is reflecting. We shall give criteria
for deciding which.

Proposition 4. If P,(— p,) >0 then p,, g obeys (i), but
if Pp(—PB1) <O then py, g obeys (ii). If Qg_,(— 1) >0
then p ; obeys (i), but if Qg J(—B1) <O then p,,,
obeys (ii). In particular p, x is increasing. If pg is
sufficiently small p,, g is increasing for n<K and if
Ao is sufficiently small p, ; is increasing for j>0.
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For any n, 0 <n <K, it holds

Pryy =(s+2n+ 1) Qg Pp = Anytin Qr-nPra
= hnbtni1 Qg-n—aPn. )

We have the relation

K r

By Br=tty - ,uxzo ‘Hlm"lx—ﬁm S )]
re0 im

As t—0 we have asymptotically

Puf8)~ey,, 11" |n—j]1. @

2. Relation to previous work on the subject

The model has been studied by Ledermann & Reuter
(1954), Keilson (1964, 1965, 1971) and Rosenlund
(1977). Our (1) corresponds to a spectral representa-
tion in Ledermann & Reuter (1954), eq. (1.79), mo-
dified by Keilson (1964), eq. (3.13). This is written
in a different form, via the K +1 eigenvectors of an
eigenvalue equation of order K +1. Keilson (1964)
gives the Laplace transform (4.13) which is similar
to our (9), but the structure of and relations between
the polynomials A, A2 and ¢! are not made clear.
It seems that our procedure is shorter, more elemen-
tary and gives a theoretically and numerically simpler
and for the truncated case more informative solu-
tion. It depends on the relation (6) in Rosenlund
(1977). This result is due to Ledermann & Reuter
(1954), Lemma 1, p. 328, but the direct application
to the passage time problem, which is thereby sim-
plified, seems to be due to the present author. In
the work of Keilson (1964, 1965, 1971) the transi-
tion probability solution yields passage time results,
whereas we go the other way, the advantage of which
is demonstrated for example by the simple proof of
Proposition 3. The first part of Proposition 2 follows
from the spectral representations already known,
otherwise our results appear to be new.

3. Proofs

Proof of Proposition 1, relations (2), (3) and (4)

The polynomials P, were introduced in Rosenlund
(1977) in dealing with passage times in the birth-
death process on the non-negative integers. Letting
=0,,; (i=1, ..., r) be the zeros of P, it was shown
(relation (6)) that these are real and with proper
ordering satisfy 0, ;<6,_; ; <0, for 1<i<r-1
and r >2. The proof holds as well for the process
truncated at X for 2 <r <K +1. It was further shown
that 0, ;>0 for r>1, but for the present case this
holds only for 1 <r <K, because 4,_, =0forr=K+1.
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We have P,(0) =4, ... 4,_, (see Rosenlund (1977), eq.
(11)), hence Pg,,(0) =0. Thus

0 =0ku,1 <Og1 <Ogs1,a <. <Og g <O0gu gu-

%)

Setting B, =0g... ,+ the representation of Pg.,, in
Proposition 1 follows.

The sequence Q, has the same structure as the
sequence P,: the recurrence relation for P, is sa-
tisfied by Q, if 1, and g, are replaced by A% =pug_,
and u} =Ag_,, respectively (these are the birth and
death rates for the process K — N(¢)). In particular,
with —¢, ; the zeros of Q,, it holds ¢, ; <@, ;<
Pr,i+1-

We now take the forward Kolmogorov differential
equation as the basis for our study. This reads

=+ p9)Pn, 3+ Aj1Pn, j1 T Hy21 P, 141
0<j<K, ©)

g .
Pn,y =

with initial condition p, ;(0)=46, ; (Kronecker’s
delta).
Letting for s >0

5o [ mra
0

Laplace transformation of (6) gives (Churchill (1958),
sec. 4)

8Pn,;On, ;= (AT 8) Pnj+ Ajo1 P, 2
+ a1 P, g1 (@)

For each n this defines a linear system with K +1
equations, where we note that 5, _, =P, g+ =0. De-
fine its K+1 by K+1 matrix A with element a;,,
in row j and column r(0 <j <K, 0 <r < K) defined by

=Aj, r=j-1

S tpy, r=j

a,r =

~Wys, r=j+1

0, elsewhere.

Then we write (7) in the form
s O, 2]" ®)

Denote by C, the subdeterminant obtained from A4
by deleting rows and columns nos. #, ..., K. Set C, =1
and Cg.; =A. Expanding C, along its last row gives
a recursive relation identical with the one defining
P,, hence C,=P,, 0<r<K+1. Cf. Ledermann &
Reuter (1954), eqgs. (1.17) and (1.18). Further denote
by D, the subdeterminant of A4 obtained by deleting
rows and columns nos. 0, ..., K—r. Set Dy=1 and
Dg.,=A. Expanding D, along its first row gives a

A[ﬁn,o, s ﬁn.K]T = [5,,'0,



recursive scheme identical with the one defining Q,,
hence D,=Q,, 0<r<K-+1. It follows that Pg,, =
Qg+1=A4. By (5) then A(s) >0 and (8) has a unique
solution for s>0. Expanding 4 along row no. n
gives the relation (2). The solution of (8) by Cramer’s
rule is written $,, ; =B, ;/4, where B, ; is obtained
from 4 by replacing column no. j with [, o, ...,
8, x)". Thus B, , is the cofactor of the element
a,,;, and this is easily found to be g, ... 4, C;Dg,,
for n>j, 2y ... 4_,C,Dg_; for n<j, and C,Dg_,
for n=j. Hence

Pn,1 = Cn,1QR-mexn, ) Prinin. n/Pr+1s
O<n<k, 0<j<K ©

Inversion of (9) gives (Churchill (1958), sec. 20) the
representation (1) with a,,; , given by the second
expression, noting that the term corresponding to
r=0 and 8, =0 is the limit of p,,,(¢) as > oo and
hence equal to x;. Using this and setting n =K and
Jj=0 in (9) gives relation (3). The Tauberian result
(4) follows from (9) completely parallel to the deriva-
tion of (9) in Rosenlund (1977). The first expression
for a,,;, , in Proposition 1 follows from equating the
second one with the coefficients of (1.79) in Leder-
mann & Reuter (1954). In the present notation these
are

g1

K
= n("'ﬂy) Pj(_ﬂr)/(co.nci.n Z Pi("ﬁr)g/(f ,zci,n))-

Proof of Proposition 2

First assume that P, and Qx_, have no zeros in
common. Let —a,, where 0<a,,<a,,<..<
o, g, be the zeros of Qg , P,. We shall prove

10

Then the numerator as well as the denominator in
the second expression for a, ,, will be non-zero
and alternate in sign as r goes from 1 to K, hence
all terms will be positive. Now (10) is equivalent to

(=) Pgia(~2,,) >0, amn

Let us for r given assume that «,, , =8, , for some 7.
Then

Uny <P <opy <. <Py <oy g<Pg

1<r<Kk

Pr=n,r-i <On. i <Pgen,r-ts1

hence

(=1 Qg n(=6,,)>0.

From Rosenlund (1977), relation (6”), we have

(-1 P, y(~6,,)>0.
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By (2) we get

(1) Pgay(—ay ) =Apypal — 1~ Qr_n( =0,.1)
x (=D Py (=0, >0.

Similarly (11) follows when «,, , =@g_n, ; for some i.

For the case when P, and Qg_, have common
zeros, we construct a process N%(¢), where 4, is
replaced by 2%_;=2,.,+a, a>0, while all other
transition rates are unchanged. Then Pg(-0, ,)=
aP,_ (-6, ,)+0. When ¢ is small enough P; and
Q% n=Qx-n will have no common zeros, since
6%, is continuous in a. Hence

Q-8 Po( =B Prsr( -7
= li_lz Q- — B7) P~ B7)/ Pisa - B7) > 0.

For this case (10) will hold with < replaced by <.

The remainder of Proposition 2 follows from eq.
(2), which shows that a zero of P, is a zero of Pg.,
if and only if it is also a zero of Qg_,, and that a
zero of Qg._, is a zero of Pk, if and only if it is
also a zero of P,.

An example where P, has zeros in common with
Qx_n is the case K=2M, n=M and p, = 2¢..,. Then
P, =Q, = Qx_y, and there will be only K/2 +1 posi-
tive terms in the representation (1) for pyy, 5.

Proof of Proposition 3

Here we use eq. (5) in Rosenlund (1977), which for
n<j gives o, ;=c,, ;P,/P;, where o, ;is the Laplace
transform of the density of a first passage time from
n to j. Likewise 6, ; =y, ;Qg-n/Qg—; for n>j; this
follows from considering K~ N(#) and using the
result above. Hence from (9) we have sp,, , =(c;,+/
Cr,1) Oy, jOm, nSPy,; for m<n<j<r (let here oy, =1),
and so the Laplace transform of pj, , will be the
Laplace transform of a probability density (except
for a constant factor) if p,, ; is increasing. The second
part of the proposition is simply equivalent to the
first part.

Proof of Proposition 4

Whether (i) or (i) holds for p, r depends on the
sign of the derivative of the first term for r=1 in
(1); this term dominates for #— oo if it is non-zero.
Its derivative has the same sign as P,(—f,). From
(10) we can infer that B, <6, , for each n (define
0, n+1 =00). Thus P,(~p,) >0 is equivalent to f; <
0,1 and P,(—B,) <0 is equivalent to 6, <, <0, ..
If pg<Og_1,1, then Pg(—0g_, 1) =(ux ~0g_1,1) x
Pg(—0g_1,1) >0 by Rosenlund (1977), relation (6"),
hence B, <0g_,,1 since Pg., <0in (— B, 0). For pig =
0g_1,1 property (i) for pg_,, g follows from a passage
to the limit ux16x_,,,, since the limit of a sequence
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of increasing functions is increasing. By Proposition
3 then p,, x is increasing for n <K if ux<0x_,,,. The
assertion on p, ; follows analogously (consider K ~
N(#)). Here A, <gg_,,, implies p,, ; increasing for
Jj>0. Note that we can verify directly that sf,, =
¢o, g/((s + By) ... (s + Bx)), which is proportional to the
transform of a convolution of K exponential densi-
ties, so that p,, g is increasing.

Remark. One might conjecture that either (i) or
(i) would hold generally for p,,; This is false.
Counterexample: Take K=3, 4, =1.1, A,=43=u, =
#a =p3=1. Then exactly B, =0.6, =2, B;=3.5, and
D2,1(2) =(5/609)(29 —8¢~"%% +29¢2¢ — 50¢~*5), This
function has a local maximum approximately at 1.02
and a local minimum approximately at 1.51, after
which it increases to its limit.
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